
 

 1 

MCQDoctor: Multiple Choice Questions Validator 

Documentation & User Guide 

Release Date: December 2025 

Platform: Universal (HTML5/JavaScript) - Client-Side Only 

1. Introduction 

MCQDoctor is an AI-powered clinical audit tool designed for academicians and 
medical educators. It automates the validation of Multiple Choice Questions (MCQs) 
against international best practices (such as NBME and Haladyna guidelines). 

The application diagnoses issues in question stems, distractors, and answer keys, 
providing a detailed report with actionable suggestions and scientifically improved 
versions of the questions. 

 

2. User Manual 

2.1. Getting Started 

When you first launch the application, you will be greeted by a Configuration Screen. 

1. API Key Requirement: The app requires a Google Gemini API Key to function. 
2. Obtaining a Key: 

• Click the link provided in the app: aistudio.google.com/app/apikey. 
• Log in with your PERSONAL Google account. Sometimes corporate Gmail 

accounts do not offer a free tokens tier 
• Click "Create API Key". 

3. Setup: Copy the key string (starts with AIzaSy...) and paste it into the input 
field. Click "Initialize App". 
• Note: The key is saved in your browser's temporary session storage. You 

will need to re-enter it if you close the browser tab. 

2.2. Uploading Questions 

• For best results and to respect the free API tokens tier, better use a maimum of 10 
MCQs per run. 

• There are two ways to input data into MCQDoctor: 

Option A: File Upload (Recommended) 

You can upload existing question files. The app uses AI to extract questions from raw 
documents automatically. 

• Supported Formats: .pdf, .docx (Word), .txt, .rtf, .json. 

https://www.google.com/url?sa=E&q=https%3A%2F%2Faistudio.google.com%2Fapp%2Fapikey
https://www.google.com/url?sa=E&q=https%3A%2F%2Faistudio.google.com%2Fapp%2Fapikey


 

 2 

• How to use: Click the "Import File" button and select your document. The 
extracted questions will appear in the text area as JSON code. 

Option B: Manual Input / Paste 

If you have questions in a raw text format or pre-formatted JSON, you can paste them 
directly into the large text area. 

Format: The app expects a JSON array: 

<>JSON 

[ 

  { 

    "question": "Patient presents with...", 

    "options": ["Diagnosis A", "Diagnosis B"], 

    "correctAnswer": "Diagnosis A" 

  } 

] 

Option C: Load Sample 

Click "Load Sample Case" to populate the area with dummy data to test the 
application's capabilities. 

2.3. Running the Diagnosis 

Once the file is loaded or text is entered: 

1. Click the "Diagnose Questions" button (Stethoscope icon). 
2. The app will show a "Analyzing Vital Signs" loading screen. 
3. Depending on the number of questions, analysis takes 5–15 seconds. 

2.4. Interpreting the Report 

The results screen is divided into three main sections: 

1. Executive Summary: A high-level overview of the quality of the entire batch of 
questions. 
 

2. Question Item Cards: Each question is displayed as a card. 
• Visual Indicators: 

ü Green (Pass): No issues found. 
ü Amber (Warning): Minor issues (e.g., negative phrasing, slight 

ambiguity). 
ü Red (Fail): Critical flaws (e.g., cueing, multiple correct answers). 



 

 3 

3. Detailed Breakdown (Click to Expand): Click on any question card to see: 
• Diagnostic Report: Specific comments on the Stem, Distractors, and Key. 
• Optimized Version: An AI-rewritten version of the question that fixes the 

flaws while keeping the clinical context. 
• Rationale: An explanation of why the correct answer is correct. 

2.5. Exporting Results 

• Click the "Download PDF Report" button at the top right of the results section. 
• The app will generate a professional, A4-formatted PDF containing the 

summary and detailed analysis for every question, suitable for printing or 
emailing to faculty. 

3. Technical Documentation (For Developers) 

3.1. Architecture 

The application is a Client-Side Single Page Application (SPA) built with React 18. 
It relies on modern browser capabilities and does not require a dedicated backend 
server for logic, as it communicates directly with the Google Gemini API. 

3.2. Tech Stack 

• Core: React 18, TypeScript (TSX). 
• Styling: Tailwind CSS (Utility-first CSS framework). 
• Icons: Lucide React. 
• AI Integration: @google/genai (Google Gemini SDK). 
• File Processing: 

o mammoth.js: For extracting text from .docx files. 
o html2pdf.js: For generating PDF reports from the DOM. 

• Build/Runtime: Can be run as a standalone HTML file (via Babel standalone) or 
compiled via Vite/Webpack. 

• Data Persistence: None. Refreshing the page clears all data (Security 
Feature). 

• Concept & Logic: Dr. Muhammad AlShorbagy, Dean, College of Pharmacy, 

GMU. 

• Technical Implementation: AI-Assisted Development (Code generation). 

Methodology: "This single-file HTML application demonstrates a 'No-
Code/Low-Code' development approach. The domain expertise, algorithm 
logic, and user experience design were provided by Dr. Muhammad 
AlShorbagy, while the source code was generated via prompt engineering using 
Large Language Models (LLMs)." 



 

 4 

3.3. API Model Configuration 

The application is currently configured to use: 

• Model: gemini-2.5-flash (Optimized for speed and efficiency). 
• Parameters: JSON Mode enabled (responseMimeType: 

"application/json") with a strict schema to ensure consistent data 
parsing. 

3.4. Security Considerations 

• API Key: The API key is stored in sessionStorage. It is never sent to any 
server other than Google's API endpoints. It is cleared when the browser tab is 
closed. 

• Data Privacy: Question data is processed in browser memory and sent only to 
the AI model for analysis. No data is stored in a persistent database by the app 
itself. 

 

4. Troubleshooting & FAQ 

Q: I get a "Failed to call Gemini API" error. 

• Check: Is your API key valid? 
• Check: Does your API key have the "Generative Language API" enabled in the 

Google Cloud Console? 
• Check: Are you on a restricted network (hospital/university VPN) that might 

block Google API calls? 

Q: The PDF report is blank or cut off. 

• Fix: Ensure you wait for the "Generating PDF..." overlay to disappear. Do not 
switch tabs while the PDF is generating. The app uses a virtual overlay to 
render the PDF; ensuring the browser window is active helps this process. 

Q: My .doc file isn't uploading correctly. 

• Fix: .doc is an older binary format. The app supports it via basic text reading, 
but formatting is often lost. Please save your file as .docx or .pdf for best 
results. 

Q: The AI didn't detect the correct answer in my uploaded file. 

• Fix: If the file doesn't explicitly mark the answer (e.g., with an asterisk * or bold 
text), the AI attempts to infer it. Always review the "Input JSON" before clicking 
Diagnose to ensure the data looks correct. 


